The Gaussian phase-space representation can be used to implement quantum dynamics for fermionic particles numerically. To improve numerical results, we explore the use of dynamical diffusion gauges in such implementations. This is achieved by benchmarking quantum dynamics of few-body systems against independent exact solutions. A diffusion gauge is implemented here as a so-called noise-matrix, which satisfies a matrix equation defined by the corresponding Fokker--Planck equation of the phase-space representation. For the physical systems with fermionic particles considered here, the numerical evaluation of the new diffusion gauges allows us to double the practical simulation time, compared with hitherto known analytic noise-matrices. This development may have far reaching consequences for future quantum dynamical simulations of many-body systems.
翻译:高斯相空间表示可用于数字实现费米粒子的量子动力学。为了提高数值结果,我们探索了在这些实现中使用动力扩散规范的可能性。通过将少数体系的量子动力学与独立的精确解进行基准测试,实现了扩散规范。在这里,扩散规范被实现为所谓的噪声矩阵,它满足由相空间表示的 Fokker-Planck 方程定义的矩阵方程。对于所考虑的有费米子粒子的物理系统,新间接方法计算扩散规范,使我们能够将实际模拟时间增加一倍,相对于已知的解析噪声矩阵。这一发展可能对未来的多体系统的量子动力学模拟产生深远的影响。