Model selection criteria are rules used to select the best statistical model among a set of candidate models, striking a trade-off between goodness of fit and model complexity. Most popular model selection criteria measure the goodness of fit trough the model log-likelihood function, yielding to non-robust criteria. This paper presents a new family of robust model selection criteria for independent but not identically distributed observations (i.n.i.d.o.) based on the R\'enyi's pseudodistance (RP). The RP-based model selection criterion is indexed with a tuning parameter $\alpha$ controlling the trade-off between efficiency and robustness. Some theoretical results about the RP criterion are derived and the theory is applied to the multiple linear regression model, obtaining explicit expressions of the model selection criterion. Moreover, restricted models are considered and explicit expressions under the multiple linear regression model with nested models are accordingly derived. Finally, a simulation study empirically illustrates the robustness advantage of the method.


翻译:模型选择准则是用于在候选模型集合中选择最佳统计模型的规则,平衡拟合程度和模型复杂度之间的权衡。大多数流行的模型选择准则通过模型对数似然函数来度量拟合程度,从而得出非鲁棒的准则。本文提出了一种基于Rényi伪距离(RP)的用于独立非同分布观察(i.n.i.d.o.)的鲁棒模型选择准则新系列。RP-based模型选择标准由调节参数$\alpha$进行索引,控制效率和鲁棒性之间的权衡。推导了一些关于RP准则的理论结果,并将理论应用于多元线性回归模型,获得了模型选择准则的显式表达式。此外,考虑了限制模型,并相应地在多元线性回归模型下使用嵌套模型推导了显式表达式。最后,通过模拟研究,实证说明了该方法的鲁棒性优势。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员