Interior-point methods offer a highly versatile framework for convex optimization that is effective in theory and practice. A key notion in their theory is that of a self-concordant barrier. We give a suitable generalization of self-concordance to Riemannian manifolds and show that it gives the same structural results and guarantees as in the Euclidean setting, in particular local quadratic convergence of Newton's method. We analyze a path-following method for optimizing compatible objectives over a convex domain for which one has a self-concordant barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We provide general constructions of barriers, and show that on the space of positive-definite matrices and other symmetric spaces, the squared distance to a point is self-concordant. To demonstrate the versatility of our framework, we give algorithms with state-of-the-art complexity guarantees for the general class of scaling and non-commutative optimization problems, which have been of much recent interest, and we provide the first algorithms for efficiently finding high-precision solutions for computing minimal enclosing balls and geometric medians in nonpositive curvature.


翻译:内点法提供了一种高度灵活的凸优化框架,无论是在理论还是实践中都非常有效。其中一个关键概念是自准则壁垒。本文给出了自准则壁垒在里曼流形上的适当推广,并证明了该推广与欧几里得情况下相同的结构结果和保证,特别是牛顿法的局部二次收敛。分析了一种路径跟随方法来优化兼容目标函数的凸域,其中具有自准则壁垒,得到了与欧几里得情况下相同的标准复杂度保证。提供了壁垒的一般构造,并证明在正定矩阵空间和其他对称空间上,到原点的平方距离是自准确壁垒。为了展示我们框架的多样性,给出了具有最先进复杂度保证的缩放和非交优化问题的算法,这些问题近来备受关注,并提供了第一个有效地计算非正曲率下的最小包围球和几何中位数高精度解的算法。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
66+阅读 · 2022年9月30日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
82+阅读 · 2022年8月2日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员