In this paper, we propose a density estimation algorithm called \textit{Gradient Boosting Histogram Transform} (GBHT), where we adopt the \textit{Negative Log Likelihood} as the loss function to make the boosting procedure available for the unsupervised tasks. From a learning theory viewpoint, we first prove fast convergence rates for GBHT with the smoothness assumption that the underlying density function lies in the space $C^{0,\alpha}$. Then when the target density function lies in spaces $C^{1,\alpha}$, we present an upper bound for GBHT which is smaller than the lower bound of its corresponding base learner, in the sense of convergence rates. To the best of our knowledge, we make the first attempt to theoretically explain why boosting can enhance the performance of its base learners for density estimation problems. In experiments, we not only conduct performance comparisons with the widely used KDE, but also apply GBHT to anomaly detection to showcase a further application of GBHT.
翻译:在本文中,我们提出一个称为 \ textit{ great 推动直方图变换} (GBHT) 的密度估计算法, 我们在这个算法中采用\ textit{ Negative Log Lilihood} 作为损失函数, 使推进程序可用于不受监督的任务。 从学习理论的角度看, 我们首先证明GBHT 快速趋同率, 并假设其内在密度函数位于 $C {%0,\alpha} $ 的空间。 当目标密度函数位于 $C$1,\ alpha} 时, 我们为GBHT 设定了一个上限值, 从趋同率的意义上看, 它小于相应的基础学习者的下限 。 根据我们的知识, 我们第一次尝试从理论上解释为什么 提振能提高基础学习者对密度估计问题的性能。 在实验中, 我们不仅与广泛使用的 KDE 进行性能比较,, 而且还应用 GBHT 异常性检测来展示 GBHT 进一步应用 GBHT 。