In distributed optimization problems, a technique called gradient coding, which involves replicating data points, has been used to mitigate the effect of straggling machines. Recent work has studied approximate gradient coding, which concerns coding schemes where the replication factor of the data is too low to recover the full gradient exactly. Our work is motivated by the challenge of creating approximate gradient coding schemes that simultaneously work well in both the adversarial and stochastic models. To that end, we introduce novel approximate gradient codes based on expander graphs, in which each machine receives exactly two blocks of data points. We analyze the decoding error both in the random and adversarial straggler setting, when optimal decoding coefficients are used. We show that in the random setting, our schemes achieve an error to the gradient that decays exponentially in the replication factor. In the adversarial setting, the error is nearly a factor of two smaller than any existing code with similar performance in the random setting. We show convergence bounds both in the random and adversarial setting for gradient descent under standard assumptions using our codes. In the random setting, our convergence rate improves upon block-box bounds. In the adversarial setting, we show that gradient descent can converge down to a noise floor that scales linearly with the adversarial error to the gradient. We demonstrate empirically that our schemes achieve near-optimal error in the random setting and converge faster than algorithms which do not use the optimal decoding coefficients.
翻译:在分布式优化问题中,一种称为梯度编码的技术,它涉及复制数据点,已经被用来减轻螺旋机器的影响。最近的工作研究了大约梯度编码,它涉及到数据复制系数过低从而无法准确恢复整个梯度的编码办法。我们的工作动力是建立大约梯度编码办法的挑战,这种办法在对称和随机模型中同时运作良好。为此,我们采用了基于扩大图形的粗略粗略梯度编码,每台机器在其中接收精确的两块数据点。我们分析了随机和对称标准标准点设置的解码差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差错差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差差