Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.
翻译:信号处理方面的许多问题会降低到非参数函数估计。 我们提出了一种新的方法, 节纸相接( PCF), 并给出了两阶段适应性估计。 在第一阶段, 变化点的数量和位置是使用强力平滑来估计的。 在第二阶段, 有限的平滑样条与选择的平滑水平相匹配, 以最大限度地减少 MSE 。 施加的制约是, 第一阶段估计的每个经验变化点都会在一个区域发生单一的改变点。 这一限制相当于要求第二阶段估计的第三个衍生物在小附近每个第一阶段变化点有一个单一的信号。 我们描述了PCF如何应用于信号恢复、 即时频率估计、 地表重建、 图像分割、 光谱估计 和多变性适应回归 。