The kernel truncation method (KTM) is a commonly-used algorithm to compute the convolution-type nonlocal potential $\Phi(x)=(U\ast \rho)(x), ~x \in {\mathbb R^d}$, where the convolution kernel $U(x)$ might be singular at the origin and/or far-field and the density $\rho(x)$ is smooth and fast-decaying. In KTM, in order to capture the Fourier integrand's oscillations that is brought by the kernel truncation, one needs to carry out a zero-padding of the density, which means a larger physical computation domain and a finer mesh in the Fourier space by duality. The empirical fourfold zero-padding [ Vico et al J. Comput. Phys. (2016) ] puts a heavy burden on memory requirement especially for higher dimension problems. In this paper, we derive the optimal zero-padding factor, that is, $\sqrt{d}+1$, for the first time together with a rigorous proof. The memory cost is greatly reduced to a small fraction, i.e., $(\frac{\sqrt{d}+1}{4})^d$, of what is needed in the original fourfold algorithm. For example, in the precomputation step, a double-precision computation on a $256^3$ grid requires a minimum $3.4$ Gb memory with the optimal threefold zero-padding, while the fourfold algorithm requires around $8$ Gb where the reduction factor is $\frac{37}{64}\approx \frac{3}{5}$. Then, we present the error estimates of the potential and density in $d$ dimension. Next, we re-investigate the optimal zero-padding factor for the anisotropic density. Finally, extensive numerical results are provided to confirm the accuracy, efficiency, optimal zero-padding factor for the anisotropic density, together with some applications to different types of nonlocal potential, including the 1D/2D/3D Poisson, 2D Coulomb, quasi-2D/3D Dipole-Dipole Interaction and 3D quadrupolar potential.


翻译:内核蒸馏法 (KTM) 是一种常用的算法, 用来计算变异型的非本地潜在 $\ Phi(x) = (U\st\\rho) (x), ~x = 在 mathbb Rid} $(x) $ 美元, 在来源和/或远处, 密度 $\rho(x) 平滑和快速下降 。 在 KTM 中, 为了捕捉 Freier Integrand 的振动 $2x(x) = Phi(x) =(x) 3x(x) =(x) 3x(x) (x) (x) ), ~xxx(x) (x) (x) 美元, 在二元空间里, 圆内, eu exxx(x(x) (x) (xx) (x) (x) (x(xx) (x) (x) (x) (x(x) (x) (x) (x(x) (x) (x) (x(x(x))) (x) (x(x(x))) (x(x(x(x(x)))) (x(x(x)))) (x(x(x(x))))) (x) (x(x(x) (x(x(x)) (x(x(x(x(x)))))))) (x(x(x(x(x(x(x(x(x(x))))))))))))) (x(x(x(x(x(x(x(x))))))))) (x(x(x(x(x(x)))))) (x(x(x(x))))))) (x(x(x(x(x(x(x(x(x(x(x))))))))))) ((x)))) (x(x(x(x(x(x(x(x)))) ((x))))

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Independence testing in high dimensions
Arxiv
0+阅读 · 2022年10月31日
Arxiv
0+阅读 · 2022年10月31日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员