The (extended) Binary Value Principle (eBVP: $\sum_{i=1}^n x_i2^{i-1} = -k$ for $k>0$ and $x^2_i=x_i$) has received a lot of attention recently: several lower bounds have been proved for it (Alekseev et al 2020, Alekseev 2021, Part and Tzameret 2021), and a polynomial simulation of a strong semialgebraic proof system in IPS+eBVP has been shown (Alekseev et al 2020). In this paper we consider Ext-PC: Polynomial Calculus with the algebraic version of Tseitin's extension rule. Contrary to IPS, this is a Cook--Reckhow proof system. We show that in this context eBVP still allows to simulate similar semialgebraic systems. We also prove that it allows to simulate the Square Root Rule (Grigoriev and Hirsch 2003), which is absolutely unclear in the context of ordinary Polynomial Calculus. On the other hand, we demonstrate that eBVP probably does not help in proving exponential lower bounds for Boolean tautologies: we show that an Ext-PC (even with the Square Root Rule) derivation of any such tautology from eBVP must be of exponential size.
翻译:(extend) 二进制值原则 (eBVP: $\ sum ⁇ i=1 ⁇ n x_i2 ⁇ i-1} = -k$$k>0美元和$x%2_i=x_i$) 最近受到了很多关注: 几个下限( Alekseev et al 2020, Alekseev 2021, Part and Tzameret 2021) 已经证明了这一点, 并展示了IPS+eBVP 中强大的半成像校准系统( Alekseeev et al 2020) 的多元模拟 。 在本文中, 我们考虑 Ext- PC: 与 Tseetestin 扩展规则的al- gegebraic 版本相比, 多成体积体积。 与 IPS 不同的是, 这是一个烹饪验证系统。 我们在此背景下, eBVP仍然允许模拟类似的半成像系统。 我们还证明它允许模拟 Sqrealroot root 规则 (Grigorieviev and Hirsch 2003) 。