This paper takes a different look on the problem of testing the mutual independence of the components of a high-dimensional vector. Instead of testing if all pairwise associations (e.g. all pairwise Kendall's $\tau$) between the components vanish, we are interested in the (null)-hypothesis that all pairwise associations do not exceed a certain threshold in absolute value. The consideration of these hypotheses is motivated by the observation that in the high-dimensional regime, it is rare, and perhaps impossible, to have a null hypothesis that can be exactly modeled by assuming that all pairwise associations are precisely equal to zero. The formulation of the null hypothesis as a composite hypothesis makes the problem of constructing tests non-standard and in this paper we provide a solution for a broad class of dependence measures, which can be estimated by $U$-statistics. In particular we develop an asymptotic and a bootstrap level $\alpha$-test for the new hypotheses in the high-dimensional regime. We also prove that the new tests are minimax-optimal and demonstrate good finite sample properties by means of a small simulation study.
翻译:本文对测试高维矢量各组成部分的相互独立问题进行了不同的审视。 如果各组成部分之间所有的对称关联(例如,所有对称肯德尔的对称肯德尔的$$\tau$)都消失, 我们对于所有对称关联在绝对值上不超过某一阈值的(null)假说感兴趣。 对这些假设的考虑的动机是这样的观察: 在高维系统中, 很少有甚至可能不可能有一个完全的假设, 假设所有对称关联都完全等于零, 可以精确地模拟。 将无效假设作为综合假设的表述使得建立非标准测试的问题, 而在本文中, 我们为广泛的依赖度措施提供了一种解决方案, 可以用美元统计学来估算。 特别是, 我们开发了一种对高维系统中的新假设进行无记号测试, 并用美元/ alpha$ 标准测试。 我们还证明, 新的测试是小型的微轴- 性, 并且通过小型模拟研究来展示良好的定点样本特性。