We propose and analyze structure-preserving parametric finite element methods (SP-PFEM) for evolution of a closed curve under different geometric flows with arbitrary anisotropic surface energy $\gamma(\boldsymbol{n})$ for $\boldsymbol{n}\in \mathbb{S}^1$ representing the outward unit normal vector. By introducing a novel surface energy matrix $\boldsymbol{G}_k(\boldsymbol{n})$ depending on $\gamma(\boldsymbol{n})$ and the Cahn-Hoffman $\boldsymbol{\xi}$-vector as well as a nonnegative stabilizing function $k(\boldsymbol{n}):\ \mathbb{S}^1\to \mathbb{R}$, which is a sum of a symmetric positive definite matrix and an anti-symmetric matrix, we obtain a new geometric partial differential equation and its corresponding variational formulation for the evolution of a closed curve under anisotropic surface diffusion. Based on the new weak formulation, we propose a parametric finite element method for the anisotropic surface diffusion and show that it is area conservation and energy dissipation under a very mild condition on $\gamma(\boldsymbol{n})$. The SP-PFEM is then extended to simulate evolution of a close curve under other anisotropic geometric flows including anisotropic curvature flow and area-conserved anisotropic curvature flow. Extensive numerical results are reported to demonstrate the efficiency and unconditional energy stability as well as good mesh quality property of the proposed SP-PFEM for simulating anisotropic geometric flows.
翻译:我们提出并分析结构保留参数元素的方法(SP-PFEM) 用于在不同的几何流流中,以任意的厌食地表能量 $\gamma(\boldsymbol{n})$ (boldsymbol{n\\\\\mathbb{S\\\\\1美元) 代表外体正常矢量来进化封闭曲线。 通过引入一个新的表面能源矩阵$\boldsymbol{G{k(\boldsymbol{n}so,取决于$\gamma(\boldsymol{n}$) 和Cahn-Hoffman$\boldsymol_xxxy} 美元,以及一个非负偏差的稳定性稳定函数 $kk(\boldsymallbral) 等值的进化曲线 。 用于对正数正数的基质的基数偏差正方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平基。