In this paper we show how ideas from spline theory can be used to construct a local basis for the space of translates of a general iterated Brownian Bridge kernel $k_{\beta,\varepsilon}$ for $\beta\in\mathbb{N}$, $\varepsilon\geq 0$. In the simple case $\beta=1$, we derive an explicit formula for the corresponding Lagrange basis, which allows us to solve interpolation problems without inverting any linear system. We use this basis to prove that interpolation with $k_{1,\varepsilon}$ is uniformly stable, i.e., the Lebesgue constant is bounded independently of the number an location of the interpolation points, and that equally spaced points are the unique minimizers of the associated power function, and are thus error optimal. In this derivation, we investigate the role of the shape parameter $\varepsilon>0$, and discuss its effect on these error and stability bounds. Some of the ideas discussed in this paper could be extended to more general Green kernels.
翻译:在本文中,我们展示了如何使用来自样板理论的想法来构建一个本地基础,用于翻译一个通用的重覆的布朗大桥内核($k ⁇ beta,\varepsilon}$\beta\ in\mathb{N}$, $\varepsilon\geq 0$) 的翻译空间。 在简单的例子中, $\beta=1$, 我们为相应的拉格兰基建了一个明确的公式, 使我们能够解决内推问题, 而不颠倒任何线性系统 。 我们利用这个基础来证明$k ⁇ 1\\ varepsilon} 的内推法是统一稳定的, 也就是说, Lebesgue 常数与内置点的数是分开的, 而相同的空间点是相关权力函数的独特最小化点, 因而是最佳的。 在此衍生中, 我们调查形状参数 $\varepsilon>0 的作用, 并讨论其对于这些错误和稳定性的界限的影响。 本文中讨论的一些想法可以扩大到更普遍的绿色内核。