Learning embedding functions, which map semantically related inputs to nearby locations in a feature space supports a variety of classification and information retrieval tasks. In this work, we propose a novel, generalizable and fast method to define a family of embedding functions that can be used as an ensemble to give improved results. Each embedding function is learned by randomly bagging the training labels into small subsets. We show experimentally that these embedding ensembles create effective embedding functions. The ensemble output defines a metric space that improves state of the art performance for image retrieval on CUB-200-2011, Cars-196, In-Shop Clothes Retrieval and VehicleID.
翻译:学习嵌入功能映射到某个地物空间中附近地点的地震相关输入,用于支持各种分类和信息检索任务。 在这项工作中,我们提出了一个新颖、通用和快速的方法来定义嵌入功能的组合,这些功能可以用作改善效果的组合。每个嵌入功能都是通过随机将培训标签包装成小子集来学习的。我们实验性地显示,这些嵌入组合创造了有效的嵌入功能。组合输出定义了一个计量空间,用于改善CUB-200-2011、Cars-196、In-Shopp Clothes Retreval和SVID图像检索的艺术性能状况。