Inspired by two basic mechanisms in animal visual systems, we introduce a feature transform technique that imposes invariance properties in the training of deep neural networks. The resulting algorithm requires less parameter tuning, trains well with an initial learning rate 1.0, and easily generalizes to different tasks. We enforce scale invariance with local statistics in the data to align similar samples generated in diverse situations. To accelerate convergence, we enforce a GL(n)-invariance property with global statistics extracted from a batch that the gradient descent solution should remain invariant under basis change. Tested on ImageNet, MS COCO, and Cityscapes datasets, our proposed technique requires fewer iterations to train, surpasses all baselines by a large margin, seamlessly works on both small and large batch size training, and applies to different computer vision tasks of image classification, object detection, and semantic segmentation.
翻译:在动物视觉系统的两种基本机制的启发下,我们引入了一种特性变换技术,在深神经网络的培训中具有不变化的特性。由此产生的算法要求的参数调整较少,对初始学习率1.0进行良好的培训,并且容易地概括到不同的任务中。我们在数据中采用与本地统计的尺度变异,以对在不同情况下生成的类似样本进行匹配。为了加速趋同,我们实施了GL(n)变异属性,对一组从中提取的全球统计数据进行全球统计,即梯度下沉溶剂应在基础变化中保持不变。在图像网、 MS COCO和城市景数据集上进行了测试,我们拟议的技术需要较少的迭代来培训,大大超过所有基线,在大小批量培训中进行无缝的工程,并适用于图像分类、对象探测和语义分割等不同的计算机视觉任务。