In this work, we demonstrate provable guarantees on the training of depth-$2$ neural networks in new regimes than previously explored. (1) First we give a simple stochastic algorithm that can train a $\rm ReLU$ gate in the realizable setting in linear time while using significantly milder conditions on the data distribution than previous results. Leveraging some additional distributional assumptions we also show approximate recovery of the true label generating parameters when training a $\rm ReLU$ gate while a probabilistic adversary is allowed to corrupt the true labels of the training data. Our guarantee on recovering the true weight degrades gracefully with increasing probability of attack and it's nearly optimal in the worst case. Additionally, our analysis allows for mini-batching and computes how the convergence time scales with the mini-batch size. (2) Secondly, we focus on the question of provable interpolation of arbitrary data by finitely large neural nets. We exhibit a non-gradient iterative algorithm "${\rm Neuro{-}Tron}$" which gives a first-of-its-kind poly-time approximate solving of a neural regression (here in the $\ell_\infty$-norm) problem at finite net widths and for non-realizable data.


翻译:在这项工作中,我们展示了在新制度下培训深度-$2美元神经网络的可靠保证。 (1) 首先,我们给出了一个简单的随机算法,可以在可实现的线性环境下在线性环境下培训一个$rm ReLU$门,同时在数据分布上使用比以前的结果要温和得多得多的条件。 利用一些额外的分配假设,我们还展示了在培训一个$rm ReLU$门时真实标签生成参数的大致恢复情况,同时允许一个概率性对手腐蚀培训数据的真实标签。 我们对于恢复真实重量的保证随着攻击的概率增加而优雅地降低,而且在最坏的情况下,它几乎是最佳的。 此外,我们的分析还允许进行微型比对时间尺度与微型批量大小的趋同的拼凑,并比较如何与微型批量大小的趋同。 (2) 第二,我们侧重于通过有限的大型神经网网对任意数据进行可变相调的问题。 我们展示了一种不易变的迭代算法“$ym Neuro{-tron}” 。 我们关于恢复真实重量值的保证会随着攻击的概率增加攻击概率概率概率概率概率概率概率概率降低,而降降降降降为最接近近近近乎于一个正数的折折压数据。

0
下载
关闭预览

相关内容

专知会员服务
70+阅读 · 2021年5月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
70+阅读 · 2021年5月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员