Energy and data-efficient online time series prediction for predicting evolving dynamical systems are critical in several fields, especially edge AI applications that need to update continuously based on streaming data. However, current DNN-based supervised online learning models require a large amount of training data and cannot quickly adapt when the underlying system changes. Moreover, these models require continuous retraining with incoming data making them highly inefficient. To solve these issues, we present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN), trained with spike timing dependent plasticity (STDP). CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding by measuring the membrane potential of neurons in the recurrent layer of the RSNN with the highest betweenness centrality. We also use topological data analysis to propose a novel methodology using the Wasserstein Distance between the persistence homologies of the predicted and observed time series as a loss function. We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.


翻译:能源和数据有效的在线时间序列预测对于预测不断变化的动力系统在许多领域,特别是需要基于流数据不断更新的边缘AI应用程序中非常重要。然而,当前的DNN基于监督学习的在线学习模型需要大量的训练数据,不能快速适应基础系统的变化。此外,这些模型需要不断使用传入的数据进行重新训练,使其高度低效。为了解决这些问题,我们提出了一种全新的基于连续学习的无监督递归神经网络模型(CLURSNN),使用SPIke TimIng-Dependent Plasticity(STDP)进行训练。CLURSNN通过使用具有最高介数中心性的RSNN中神经元的膜电位来通过随机延迟嵌入重构基本动力系统进行在线预测。我们还使用拓扑数据分析提出了一种新的方法,使用预测和观察到时间序列的持久同调之间的Wassertein距离作为损失函数。我们展示了所提出的在线时间序列预测方法在预测演化的Lorenz63动力系统时优于最先进的DNN模型。

0
下载
关闭预览

相关内容

【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
60+阅读 · 2021年12月19日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
19+阅读 · 2019年11月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员