We show how to use Stein variational gradient descent (SVGD) to carry out inference in Gaussian process (GP) models with non-Gaussian likelihoods and large data volumes. Markov chain Monte Carlo (MCMC) is extremely computationally intensive for these situations, but the parametric assumptions required for efficient variational inference (VI) result in incorrect inference when they encounter the multi-modal posterior distributions that are common for such models. SVGD provides a non-parametric alternative to variational inference which is substantially faster than MCMC. We prove that for GP models with Lipschitz gradients the SVGD algorithm monotonically decreases the Kullback-Leibler divergence from the sampling distribution to the true posterior. Our method is demonstrated on benchmark problems in both regression and classification, a multimodal posterior, and an air quality example with 550,134 spatiotemporal observations, showing substantial performance improvements over MCMC and VI.
翻译:我们展示了如何使用斯坦因变差梯度(SVGD)在高森进程模型中进行非加利概率和大量数据量的推论。Markov链-蒙特卡洛(MCMC)在计算上非常密集,但高效变差推论所需的参数假设(VI)导致在遇到这种模型常见的多模式后部分布时产生不正确的推论。SVGD为利普西茨梯度的变数推论提供了非参数替代方法,比MCMC大得多。我们证明,对于利普西茨梯度的GP模型来说,SVGD算法单字法降低了从取样分布到真正的后部的Kullback-Leiber差异。我们的方法在回归和分类、多式后部外部和空气质量两个方面都存在基准问题,有550,134个波段时空观测显示比MC和VI的性能显著改善。