In this work, we focus on the high-dimensional trace regression model with a low-rank coefficient matrix. We establish a nearly optimal in-sample prediction risk bound for the rank-constrained least-squares estimator under no assumptions on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. We show that the permutation test based on the rank-constrained least-squares estimator achieves non-trivial power with no assumptions on the minimum (restricted) eigenvalue of the covariance matrix of the design. Finally, we use alternating minimization to approximately solve the rank-constrained least-squares problem to evaluate its empirical in-sample prediction risk and power of the resulting permutation test in our numerical study.
翻译:在这项工作中,我们侧重于具有低位系数矩阵的高维微量回归模型。我们在设计矩阵上没有假设的情况下,为受排位限制的最小平方估计值设定了近乎最佳的全方位预测风险。 置为证据的核心是一个覆盖与设计所跨越的子空间相对应的投影操作员家属的承载数字。 通过利用这一复杂结果,我们对高位微量回归模型下存在低位信号的情况进行变换测试。 我们显示,基于排位限制的最小平方估计值的变换测试实现了非三角能力,而没有假设设计中最小(限制的)共变异矩阵的最小值。 最后,我们使用交替最小化来大约解决受排位限制的最小平方问题,以评价其在数字研究中模拟预测风险的经验和由此产生的变异性测试的力量。