项目名称: 巴东组软岩顺层滑坡预测中多参量流数据的信息融合方法研究

项目编号: No.41302278

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 刘勇

作者单位: 中国地质大学(武汉)

项目金额: 25万元

中文摘要: 滑坡预测中的流数据具有数据量大、包含信息多、处理难度大等特点。目前运用的均值、极值等数值方法大大的弱化了其中包含的特征信息和内在规律。本项目中,以巴东组软岩顺层滑坡中一个典型斜坡的降雨流数据、入渗流数据和边坡变形流数据为研究对象,根据流数据的地质特征选取合适的特征分析方法对监测流数据进行特征分析,通过分析和论证建立特征分析的一般模型;以地质特征为依据设计特征提取的要求和目的,并在此框架下针对不同工况和不同流数据类型研究合适的流数据特征提取算法和模型,对流数据进行特征提取,构造一系列的特征子集;针对时间不同步、维度不统一的特征子集设计一种异构空间模型进行时间匹配、空间匹配,运用贝叶斯理论和D-S理论对特征信息进行集成,完成特征级信息融合,实现信息模型对滑坡状态、性质与特征的准确描述。该研究对滑坡流数据信息量的完整获取有重要意义,为滑坡预测的精确量化信息模型的建立奠定基础。

中文关键词: 滑坡;流数据;信息融合;特征提取;

英文摘要: The stream data for landside prediction are difficult to process due to its complexity and large quantity. Currently, the numerical methods of using the mean value and the maximum value overlook many important features contained in the data. In this project, we attempt to conduct information fusion of multiple stream data for landslide prediction. The data that include rainfall data, infiltration data, and slop deformation data are from Badong Formation soft rock bedding landside. Firstly, according to the geologic features of stream data, choosing proper feature analytical methods to analyze the features of monitoring stream data, establishing a general model feature analytical model through analysis and demonstration. Secondly, Based on the geologic features, designing feature extraction requirements and purpose, and in this framework aiming at different conditions and different stream data types, to study proper stream data feature extraction algorithm and models, to extract feature of stream data and construct a series of feature subsets. Finally, aiming at feature subsets with the characteristics of time non-synchronization and dimension disunity, to design a sort of heterogeneous space model to realize time match and spatial match, using Bayes theory and D-S theory for feature information integration and t

英文关键词: Landslide;Stream Data;Information Fusion;Feature Extraction;

成为VIP会员查看完整内容
0

相关内容

顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
专知会员服务
20+阅读 · 2021年8月31日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
121+阅读 · 2021年4月29日
基于机器学习的数据库技术综述
专知会员服务
53+阅读 · 2021年1月2日
基于深度学习的数据融合方法研究综述
专知会员服务
136+阅读 · 2020年12月10日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
【国防科大】复杂异构数据的表征学习综述
专知会员服务
84+阅读 · 2020年4月23日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
可解释性:对神经网络中层特征复杂度的解释与拆分
夕小瑶的卖萌屋
1+阅读 · 2021年7月29日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
ACL 2019开源论文 | 基于Attention的知识图谱关系预测
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
图像检索研究进展:浅层、深层特征及特征融合
机器学习研究会
65+阅读 · 2018年3月26日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Chinese Idiom Paraphrasing
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
专知会员服务
20+阅读 · 2021年8月31日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
121+阅读 · 2021年4月29日
基于机器学习的数据库技术综述
专知会员服务
53+阅读 · 2021年1月2日
基于深度学习的数据融合方法研究综述
专知会员服务
136+阅读 · 2020年12月10日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
【国防科大】复杂异构数据的表征学习综述
专知会员服务
84+阅读 · 2020年4月23日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
可解释性:对神经网络中层特征复杂度的解释与拆分
夕小瑶的卖萌屋
1+阅读 · 2021年7月29日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
基于深度学习的数据融合方法研究综述
专知
31+阅读 · 2020年12月10日
ACL 2019开源论文 | 基于Attention的知识图谱关系预测
一种关键字提取新方法
1号机器人网
21+阅读 · 2018年11月15日
图像检索研究进展:浅层、深层特征及特征融合
机器学习研究会
65+阅读 · 2018年3月26日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员