Knowledge distillation has been shown to be a powerful model compression approach to facilitate the deployment of pre-trained language models in practice. This paper focuses on task-agnostic distillation. It produces a compact pre-trained model that can be easily fine-tuned on various tasks with small computational costs and memory footprints. Despite the practical benefits, task-agnostic distillation is challenging. Since the teacher model has a significantly larger capacity and stronger representation power than the student model, it is very difficult for the student to produce predictions that match the teacher's over a massive amount of open-domain training data. Such a large prediction discrepancy often diminishes the benefits of knowledge distillation. To address this challenge, we propose Homotopic Distillation (HomoDistil), a novel task-agnostic distillation approach equipped with iterative pruning. Specifically, we initialize the student model from the teacher model, and iteratively prune the student's neurons until the target width is reached. Such an approach maintains a small discrepancy between the teacher's and student's predictions throughout the distillation process, which ensures the effectiveness of knowledge transfer. Extensive experiments demonstrate that HomoDistil achieves significant improvements on existing baselines.


翻译:事实证明,知识蒸馏是一种强大的模型压缩方法,有利于在实践中部署经过培训的语文模型。本文侧重于任务-神学蒸馏。它产生一个经过培训的紧凑模型,可以很容易地以少量计算成本和记忆足迹对各种任务进行微调。尽管具有实际效益,但任务-神学蒸馏具有挑战性。由于教师模型比学生模型具有比学生模型大得多的能力和更强的代表能力,因此学生很难作出与教师在大量开放式培训数据上相匹配的预测。这种巨大的预测差异往往会减少知识蒸馏的效益。为了应对这一挑战,我们建议采用具有迭接性理功能的新型任务-神学蒸馏法。具体地说,我们从教师模型开始,并反复地将学生的神经元放在目标宽度达到之前。这样一种方法在教师和学生在整个蒸馏过程中的预测之间维持了很小的差异,从而降低了知识蒸馏的效益。为了应对这一挑战,我们建议采用带有迭接作用的新的任务-神学提炼法,我们建议一种带有迭接力的新型知识的实验。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月9日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员