Let $\mathbf{G}$ be an unramified quasi-split unitary group over a p-adic field of odd residual characteristic. The goal of this paper is to describe the supercuspidal representations within certain L-packets of $\mathbf{G}$, which are classified by Arthur and Mok using the theory of endoscopy. The description is given in terms of the cuspidal types constructed by Bushnell-Kutzko and Stevens. As a starting example, we require the parameters of our packets to satisfy certain regularity conditions, such that these packets consist of very cuspidal representations in the sense of Adler and Reeder. To achieve our goal, we first interpret the question as to study the reducibilities of some parabolically induced representations, using a theory of M{\oe}glin and Shahidi; we then apply a relation, given by Blondel, between these reducibilities and the structures of some Hecke algebras, where the latter can be computed using a Theorem of Lusztig. We can interpret our final result as explicitly describing the local Langlands correspondence for $\mathbf{G}$.
翻译:让 $mathbf{G} 成为未调整的准分裂单一组, 覆盖一个有奇异残余特性的 p- adi 字段。 本文的目的是描述在某些L 容器中的超震波表示, 由Arthur 和 Mok 使用内窥镜学理论进行分类。 描述用布希内尔- 库茨科 和 Stevens 所构造的顶端类型来表示。 首先, 我们要求我们的包的参数, 以满足某些常规性条件, 例如, 这些包由Adler 和 Reeder 意义上的非常结骨表示组成。 为了实现我们的目标, 我们首先将问题解释为研究某些同代代谢性表示的重复性, 使用 Mhue}glin 和 Shahidi 的理论; 我们然后用布伦德尔 给出的 将这些重度与某些 Hecke 代布拉 结构之间的关系来解释。 我们可以使用 Lussetig 的理论来计算后一包的参数 。 我们可以将最终结果解释为用于 Lusztig $_ gland 。