Fluid antenna multiple access (FAMA) exploits the spatial opportunities in wireless channels to overcome multiuser interference by position (a.k.a.~port) switching, which can achieve better performance compared to traditional fixed multiple-input multiple-output (MIMO) systems. Additionally, integrated data and energy transfer (IDET) is capable of providing both wireless data transfer (WDT) and wireless energy transfer (WET) services towards low-power devices. In this paper, a FAMA-assisted IDET system is investigated, where a base station (BS) equipped with $N$ fixed antennas provides dedicated IDET services towards $N$ user equipments (UEs). Each UE is equipped with a single fluid antenna, while the power splitting (PS) approach is conceived for coordinating WDT and WET. The outage probabilities of both WDT and WET are derived and approximated into closed-forms, where the fluid antenna (FA) at each UE selects the optimal port to achieve the maximum signal-to-interference-plus-noise ratio (SINR) or the energy harvesting power (EHP). The IDET outage probabilities are defined and subsequently derived and approximated into closed-forms. Further, multiplexing gains of the proposed system are defined and analyzed to evaluate the performace. Numerical results validate the theoretical analysis, while also illustrate that the trade-off is achieved between WDT and WET performance by exploiting different port selection strategies. Furthermore, the number of UEs should be optimized to achieve better IDET performance of the system.
翻译:暂无翻译