We present DD-NeRF, a novel generalizable implicit field for representing human body geometry and appearance from arbitrary input views. The core contribution is a double diffusion mechanism, which leverages the sparse convolutional neural network to build two volumes that represent a human body at different levels: a coarse body volume takes advantage of unclothed deformable mesh to provide the large-scale geometric guidance, and a detail feature volume learns the intricate geometry from local image features. We also employ a transformer network to aggregate image features and raw pixels across views, for computing the final high-fidelity radiance field. Experiments on various datasets show that the proposed approach outperforms previous works in both geometry reconstruction and novel view synthesis quality.
翻译:我们提出了DD-NERF,这是代表人体几何学和任意输入观点外观的新颖的、可推广的隐含面域。核心贡献是一个双重扩散机制,它利用稀有的进化神经网络构建两卷体,在不同层次代表人体:粗体体积利用未穿衣的变形网格提供大型几何指导,而一个细节特征体积则从本地图像特征中学习复杂的几何学。我们还使用变压器网络,将图像特征和原始像素综合到各种视图中,用于计算最终的高纤维光亮场。关于各种数据集的实验显示,拟议方法在几何学重建和新观点合成质量两方面都超过了以往的工作。