Deep learning techniques for point clouds have achieved strong performance on a range of 3D vision tasks. However, it is costly to annotate large-scale point sets, making it critical to learn generalizable representations that can transfer well across different point sets. In this paper, we study a new problem of 3D Domain Generalization (3DDG) with the goal to generalize the model to other unseen domains of point clouds without any access to them in the training process. It is a challenging problem due to the substantial geometry shift from simulated to real data, such that most existing 3D models underperform due to overfitting the complete geometries in the source domain. We propose to tackle this problem via MetaSets, which meta-learns point cloud representations from a group of classification tasks on carefully-designed transformed point sets containing specific geometry priors. The learned representations are more generalizable to various unseen domains of different geometries. We design two benchmarks for Sim-to-Real transfer of 3D point clouds. Experimental results show that MetaSets outperforms existing 3D deep learning methods by large margins.
翻译:点云的深度学习技术在一系列 3D 视觉任务中取得了很强的绩效。 但是,批注大型的点数组却成本高昂,因此,学习能够在不同点组之间转移的通用表示十分关键。 在本文中,我们研究了3D 通用域(3DDG)的新问题,目的是将该模型推广到其他看不见的点云域,而培训过程中则没有任何机会接触这些云。由于从模拟数据向真实数据的重大几何转换,因此这是一个具有挑战性的问题,因此大多数现有的3D模型由于在源域内过度配置完整的几何模型而表现不佳。我们提议通过MetaSet(MetaSet)来解决这个问题,MetaSet(Meta-lears)指出云表来自一组精心设计的、含有具体几何前的转换点组的分类任务。所学的表示方法对于不同地理图解的不同的未知领域更为广泛。我们为3D 点云的Sim-Real传输设计了两个基准。实验结果表明,MetSetset(Metset) 超越了大边缘现有的三维深学习方法。