The paper addresses a problem of sampling discretization of integral norms of elements of finite-dimensional subspaces satisfying some conditions. We prove sampling discretization results under a standard assumption formulated in terms of the Nikol'skii-type inequality. {In particular, we obtain} some upper bounds on the number of sample points sufficient for good discretization of the integral $L_p$ norms, $1\le p<2$, of functions from finite-dimensional subspaces of continuous functions. Our new results improve upon the known results in this direction. We use a new technique based on deep results of Talagrand from functional analysis.
翻译:本文涉及满足一定条件的有限维子空间元素积分范数采样离散化问题。我们在Nikol’skii型不等式的标准假设下证明了采样离散化结果。特别地,我们得到了一些上界,在这些上界下样本点的数量足够好地离散化函数的$L_p$范数($1\le p<2$),这些函数来自连续函数的有限维子空间。我们使用了Talagrand 的一些深度函数分析结果的新技术。我们的新结果在此方面优于已知结果。