This article proposes a new generalization of the Multivariate Markov Chains (MMC) model. The future values of a Markov chain commonly depend on only the past values of the chain in an autoregressive fashion. The generalization proposed in this work also considers exogenous variables that can be deterministic or stochastic. Furthermore, the effects of the MMC's past values and the effects of pre--determined or exogenous covariates are considered in our model by considering a non--homogeneous Markov chain. The Monte Carlo simulation study findings showed that our model consistently detected a non--homogeneous Markov chain. Besides, an empirical illustration demonstrated the relevance of this new model by estimating probability transition matrices over the space state of the exogenous variable. An additional and practical contribution of this work is the development of a novel R package with this generalization.
翻译:本条提议对多变马尔科夫链(MMC)模式进行新的概括化。 马尔科夫链条的未来值通常仅取决于该链条以自动递减方式的过去值。 本文中提议的概括化还考虑到可确定性或随机性的外源变量。 此外,本模型通过考虑非均匀的马尔科夫链条,考虑了MMC过去值的影响以及预先确定性或外源性同源变量的影响。蒙特卡洛模拟研究结果显示,我们的模型一贯地发现了一个非均匀的马尔科夫链条。此外,一项经验性说明通过估计外源变量空间状态的概率转换矩阵,表明了这一新模型的相关性。 这项工作的另一个实际贡献是开发了一个带有这种概括性的新型R包。