Learning conditional densities and identifying factors that influence the entire distribution are vital tasks in data-driven applications. Conventional approaches work mostly with summary statistics, and are hence inadequate for a comprehensive investigation. Recently, there have been developments on functional regression methods to model density curves as functional outcomes. A major challenge for developing such models lies in the inherent constraint of non-negativity and unit integral for the functional space of density outcomes. To overcome this fundamental issue, we propose Wasserstein Distributional Learning (WDL), a flexible density-on-scalar regression modeling framework that starts with the Wasserstein distance $W_2$ as a proper metric for the space of density outcomes. We then introduce a heterogeneous and flexible class of Semi-parametric Conditional Gaussian Mixture Models (SCGMM) as the model class $\mathfrak{F} \otimes \mathcal{T}$. The resulting metric space $(\mathfrak{F} \otimes \mathcal{T}, W_2)$ satisfies the required constraints and offers a dense and closed functional subspace. For fitting the proposed model, we further develop an efficient algorithm based on Majorization-Minimization optimization with boosted trees. Compared with methods in the previous literature, WDL better characterizes and uncovers the nonlinear dependence of the conditional densities, and their derived summary statistics. We demonstrate the effectiveness of the WDL framework through simulations and real-world applications.
翻译:有条件的学习密度和识别影响整个分布的因素是数据驱动应用的重要任务。 常规方法主要使用简要统计,因此不足以进行全面调查。 最近, 功能回归方法的发展, 将密度曲线作为功能结果模型。 开发这些模型的主要挑战在于非增强性的内在制约和密度结果功能空间的单位组成部分。 为了克服这一根本问题, 我们提议瓦瑟斯坦分布学习( WDL), 一个灵活的比例- 比例回归模型框架, 以瓦瑟斯坦距离开始, $W_ 2美元作为密度结果空间的适当衡量标准。 然后, 我们引入了一种混杂和灵活的半参数定义曲线模型( SCGMMM), 作为密度结果功能空间的功能空间。 为了克服这一根本问题, 我们建议瓦瑟斯坦分布学习( WdL) 。 由此产生的度空间( mathfrak{F}\ 缩略图 ) 的密度- 比例回归模型, W_ 2$ 满足要求的密度和弹性的半参数应用, 提供了一种基于当前和封闭功能结构的模型的升级, 。 将先前的缩略图的缩图化的缩图化的模型与前的缩略图化的缩成。