In this paper we integrate the isotonic regression with Stone's cross-validation-based method to estimate discrete infinitely supported distribution. We prove that the estimator is strongly consistent, derive its rate of convergence for any underlying distribution, and for one-dimensional case we derive Marshal-type inequality for cumulative distribution function of the estimator. Also, we construct the asymptotically correct conservative global confidence band for the estimator. It is shown that, first, the estimator performs good even for small sized data sets, second, the estimator outperforms in the case of non-monotone underlying distribution, and, third, it performs almost as good as Grenander estimator when the true distribution is isotonic. Therefore, the new estimator provides a trade-off between goodness-of-fit, monotonicity and quality of probabilistic forecast. We apply the estimator to the time-to-onset data of visceral leishmaniasis in Brazil collected from 2007 to 2014.
翻译:在本文中,我们将等离子回归与斯通的跨校验法法整合在一起,以估计离散的无限支持的分布。我们证明估计符非常一致,得出其任何潜在分布的趋同率,对于一维情况,我们得出测量符累积分布功能的元数据型不平等。此外,我们为估计符构建了无偏向的保守全球信任带。我们发现,首先,估计符即使在小尺寸数据集中也表现良好,第二,在非摩诺内基本分布的情况下,估计符优异,第三,在真实分布为异质时,其表现几乎与格伦南德天线一样好。因此,新估计符提供了对称、单调和抗变性预报质量之间的权衡。我们用估计符来计算2007至2014年在巴西收集的相对性利什曼丝虫病的时间和时间间隔数据。