Neural networks have recently shown promise for likelihood-free inference, providing orders-of-magnitude speed-ups over classical methods. However, current implementations are suboptimal when estimating parameters from independent replicates. In this paper, we use a decision-theoretic framework to argue that permutation-invariant neural networks are ideally placed for constructing Bayes estimators for arbitrary models, provided that simulation from these models is straightforward. We show that the resulting neural Bayes estimators can quickly and optimally estimate parameters in weakly-identified and highly-parameterised models with relative ease, and that they are highly competitive and much faster than traditional likelihood-based estimators. We apply our estimator on a spatial analysis of sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates, and uncertainty quantification of the estimates via bootstrap sampling, from hundreds of spatial fields in a fraction of a second.
翻译:神经网络最近表现出了无概率推断的希望,为古典方法提供了最强的放大速度,但是,在估算独立复制的参数时,目前的执行并不理想。在本文中,我们使用一个决策理论框架来论证,在通过这些模型进行模拟时,如果这些模型的模拟是直截了当的,则建造贝亚斯测算器是最理想的。我们表明,由此产生的神经湾测算器能够以相对容易的方式快速和最优化地估计薄弱的和高度分离的模型中的参数,而且这些模型具有高度竞争力,比传统的基于概率的测算器要快得多。 我们在红海对海的海地表温度进行空间分析时使用了我们的测算器,在红海中,经过培训后,我们从数以百计的空间领域获得参数估计,并通过陷阱取样对估计数进行不确定的量化。