Various real-world scientific applications involve the mathematical modeling of complex uncertain systems with numerous unknown parameters. Accurate parameter estimation is often practically infeasible in such systems, as the available training data may be insufficient and the cost of acquiring additional data may be high. In such cases, based on a Bayesian paradigm, we can design robust operators retaining the best overall performance across all possible models and design optimal experiments that can effectively reduce uncertainty to enhance the performance of such operators maximally. While objective-based uncertainty quantification (objective-UQ) based on MOCU (mean objective cost of uncertainty) provides an effective means for quantifying uncertainty in complex systems, the high computational cost of estimating MOCU has been a challenge in applying it to real-world scientific/engineering problems. In this work, we propose a novel scheme to reduce the computational cost for objective-UQ via MOCU based on a data-driven approach. We adopt a neural message-passing model for surrogate modeling, incorporating a novel axiomatic constraint loss that penalizes an increase in the estimated system uncertainty. As an illustrative example, we consider the optimal experimental design (OED) problem for uncertain Kuramoto models, where the goal is to predict the experiments that can most effectively enhance robust synchronization performance through uncertainty reduction. We show that our proposed approach can accelerate MOCU-based OED by four to five orders of magnitude, without any visible performance loss compared to the state-of-the-art. The proposed approach applies to general OED tasks, beyond the Kuramoto model.
翻译:许多现实世界的科学应用涉及复杂不确定系统的数学建模和众多未知参数。在这种系统中,经常准确的参数估计是不可行的,因为可用的训练数据可能是不足的,而获取额外数据的成本可能很高。在这种情况下,基于贝叶斯范式,我们可以设计出保持最佳综合性能的强壮性运算符跨越所有可能的模型,并设计出能够有效降低不确定性的最优实验,以最大程度地增强这种运算符的性能。虽然基于MOCU(实现目标不确定性的平均代价)的目标驱动不确定性量化(目标量化)提供了一种在复杂系统中量化不确定性的有效手段,但估计MOCU的高计算成本一直是将其应用于现实科学/工程问题的一个挑战。在这项工作中,我们提出了一种通过数据驱动方法减少基于MOCU的目标量化的计算成本的新方案。我们采用神经消息传递模型进行代理建模,采用一种新颖的公理约束损失来惩罚估计的系统不确定性增加。作为一个说明性例子,我们考虑不确定Kuramoto模型的最优实验设计(OED)问题,目标是预测通过不确定性降低可以最有效地增强鲁棒同步性能的实验。我们展示了我们提出的方法可以将基于MOCU的OED加速四到五个数量级,而与最先进的方法相比没有任何可见的性能损失。所提出的方法适用于一般的OED任务,超出了Kuramoto模型。