We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a diffeomorphism or a submersion, we derive new bounds on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ samples $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from random samples, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.
翻译:我们研究如何通过一个平滑的函数来估计图像 $f(X)\ subset\ mathbb{R<unk> n$(美元) 的粘合体壳,通过一个平滑的函数来估计一个平滑的边界 $X\ subset\ mathb{R<unk> m\to\mathbb{R<unk> n$(美元) 的问题。假设美元是二面形或俯冲,我们从Hausdorff 的块状体距离上得出新的界限: $f(X) $(美元) 和 美元(美元) 样本 $(美元) x_ i) 的粘合体。 当应用于随机样本的几何推论问题时, 我们的结果比艺术的状态更近和一般的误差。 我们展示了强力优化、 动态系统的可达性分析、 以及受约束不确定性的轨迹优化等问题的应用。</s>