Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Even though PD-DL offers higher acceleration rates compared to existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. One impediment for their deployment is the difficulties with generalization to pathologies or population groups that are not well-represented in training sets. This has been noted in several studies, and fine-tuning on target populations to improve reconstruction has been suggested. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and underserved areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training, using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates the goodness of the output with a compressibility-based approach, while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show that CUPID achieves similar quality compared to well-established PD-DL training strategies that require raw k-space data access, while outperforming conventional compressed sensing (CS) and state-of-the-art generative methods. We also demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden.
翻译:暂无翻译