The extragradient method has recently gained increasing attention, due to its convergence behavior on smooth games. In $n$-player differentiable games, the eigenvalues of the Jacobian of the vector field are distributed on the complex plane, exhibiting more convoluted dynamics compared to classical (i.e., single player) minimization. In this work, we take a polynomial-based analysis of the extragradient with momentum for optimizing games with \emph{cross-shaped} Jacobian spectrum on the complex plane. We show two results. First, based on the hyperparameter setup, the extragradient with momentum exhibits three different modes of convergence: when the eigenvalues are distributed $i)$ on the real line, $ii)$ both on the real line along with complex conjugates, and $iii)$ only as complex conjugates. Then, we focus on the case $ii)$, i.e., when the eigenvalues of the Jacobian have \emph{cross-shaped} structure, as observed in training generative adversarial networks. For this problem class, we derive the optimal hyperparameters of the momentum extragradient method, and show that it achieves an accelerated convergence rate.
翻译:由于在平滑的游戏中有着趋同的趋同行为,超高级方法最近受到越来越多的关注。在美元玩家不同的游戏中,矢量场Jacobian的双倍价值分布在复杂的平面上,与古典(即单玩家)的最小化相比,显示的动力更加混乱。在这项工作中,我们对超高级方法进行基于多元的分析,在复杂平面上以正方形的雅各布频谱优化游戏的势头。我们展示了两个结果。首先,根据超常参数设置,具有动力的超常显示三种不同的趋同模式:当在真实的平面上分配eigen值时,在真实线上显示的是1美元,在真实线上显示的是1美元,在与复杂共形(即单玩家)一起显示的是1美元,而美元仅作为复杂的组合。然后,我们把重点放在案件 $(ii) 美元,即当雅各布的双倍值已经显示的是双向成形的游戏结构,正如在培训的组合式对称网络中观测到的那样,动力结构显示的是三种不同的趋同速度。