Correlated Equilibrium is a solution concept that is more general than Nash Equilibrium (NE) and can lead to outcomes with better social welfare. However, its natural extension to the sequential setting, the \textit{Extensive Form Correlated Equilibrium} (EFCE), requires a quadratic amount of space to solve, even in restricted settings without randomness in nature. To alleviate these concerns, we apply \textit{subgame resolving}, a technique extremely successful in finding NE in zero-sum games to solving general-sum EFCEs. Subgame resolving refines a correlation plan in an \textit{online} manner: instead of solving for the full game upfront, it only solves for strategies in subgames that are reached in actual play, resulting in significant computational gains. In this paper, we (i) lay out the foundations to quantify the quality of a refined strategy, in terms of the \textit{social welfare} and \textit{exploitability} of correlation plans, (ii) show that EFCEs possess a sufficient amount of independence between subgames to perform resolving efficiently, and (iii) provide two algorithms for resolving, one using linear programming and the other based on regret minimization. Both methods guarantee \textit{safety}, i.e., they will never be counterproductive. Our methods are the first time an online method has been applied to the correlated, general-sum setting.
翻译:与 相关 的 平衡 是一个比 Nash Equilibrium ( NE) 更普遍的解决方案概念, 比 Nash Equilibrium (NE) 更普遍, 并且可以带来更好的社会福利。 然而, 它自然延伸到顺序设置, 自然延伸到整个游戏, 而不是解决前端的游戏, 它只能解决实际游戏中达到的子游戏中的策略, 从而带来巨大的计算收益。 在本文中,我们(i) 为量化改进战略的质量奠定了基础, 以纯文本{ 社会福利} 和\ textit{ 可开发} 解决总和 EFCE。 解决子游戏的方法非常成功。 以\ textitle{ online} 的方式完善一个相关计划 : 它不是解决前端的全部游戏, 而是解决实际游戏中达到的子游戏中的策略, 从而带来巨大的计算收益。 在本文中, 我们(i) 为量化改进战略的质量打下的基础, 从 text 社会福利} 和\ textitle{ 可开发} 相关计划, (ii) (ii) (ii) 显示 EFecrealtitualtitualtial deliversal deal ral) 3 提供 之间的方法是有效的解决。