In the paper, we study a class of useful minimax problems on Riemanian manifolds and propose a class of effective Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose an effective Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa^2\epsilon^{-2})$ for finding an $\epsilon$-stationary solution of the Geodesically-Nonconvex Strongly-Concave (GNSC) minimax problems, where $\kappa$ denotes the condition number. At the same time, we present an effective Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization, which has a sample complexity of $O(\kappa^4\epsilon^{-4})$ for finding an $\epsilon$-stationary solution. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the momentum-based variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa^{4}\epsilon^{-3})$ in searching for an $\epsilon$-stationary solution of the GNSC minimax problems. Extensive experimental results on the robust distributional optimization and robust Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.
翻译:在论文中,我们研究了一系列关于里马尼亚地块的有用的小型问题,并提出了一系列基于里马尼亚梯度的有效方法来解决这些小型问题。具体地说,我们提出一个有效的里曼尼梯度下坡率(RGDA)算法,用于确定性小型马克思优化。此外,我们证明我们的里曼梯度梯度下坡率(RGDA)算法的样本复杂度为$(kappa)2\\eepsilón ⁇ 2}(美元),用于为大地-非康涅狄格(GNSC)小型地基(GNSC) 找出一个以美元为固定价格的固定性解决方案。为了进一步降低样本复杂性,我们建议以里曼尼梯度梯度梯度下降(RODA)算出一个基于我们不断变压的变压率(SDRQRQA) 。