This paper addresses real-time dense 3D reconstruction for a resource-constrained Autonomous Underwater Vehicle (AUV). Underwater vision-guided operations are among the most challenging as they combine 3D motion in the presence of external forces, limited visibility, and absence of global positioning. Obstacle avoidance and effective path planning require online dense reconstructions of the environment. Autonomous operation is central to environmental monitoring, marine archaeology, resource utilization, and underwater cave exploration. To address this problem, we propose to use SVIn2, a robust VIO method, together with a real-time 3D reconstruction pipeline. We provide extensive evaluation on four challenging underwater datasets. Our pipeline produces comparable reconstruction with that of COLMAP, the state-of-the-art offline 3D reconstruction method, at high frame rates on a single CPU.
翻译:本文针对资源受限的自主水下航行器(AUV),提出了实时稠密三维重建技术。水下视觉引导操作属于最具挑战性的领域之一,它们同时需要处理在存在外部作用力、视线有限以及缺少全局定位等情况下的三维运动问题。障碍物避免和有效路径规划需要在线稠密环境重建。自主操作是进行环境监测、海洋考古、资源利用和水下洞穴探险的必要条件。为解决此类问题,我们提出了使用强健的 VIO 方法 SVIn2 和实时三维重建算法的方案。我们对四个具有挑战性的水下数据集进行了广泛的评估。我们的重建算法在单个 CPU 上以高帧率获得了与最先进的离线三维重建方法 COLMAP 相当的重建效果。