The conventional virtual-to-physical address mapping scheme enables a virtual address to flexibly map to any physical address. This flexibility necessitates large data structures to store virtual-to-physical mappings, which incurs significantly high address translation latency and translation-induced interference in the memory hierarchy, especially in data-intensive workloads. Restricting the address mapping so that a virtual address can map to only a specific set of physical addresses can significantly reduce the overheads associated with the conventional address translation by making use of compact and more efficient translation structures. However, restricting the address mapping flexibility across the entire main memory severely limits data sharing across different processes and increases memory under-utilization. In this work, we propose Utopia, a new hybrid virtual-to-physical address mapping scheme that allows both flexible and restrictive hash-based address mapping schemes to co-exist in a system. The key idea of Utopia is to manage the physical memory using two types of physical memory segments: restrictive segments and flexible segments. A restrictive segment uses a restrictive, hash-based address mapping scheme to map the virtual addresses to only a specific set of physical addresses and enable faster address translation using compact and efficient translation structures. A flexible segment is similar to the conventional address mapping scheme and provides full virtual-to-physical address mapping flexibility. By mapping data to a restrictive segment, Utopia enables faster address translation with lower translation-induced interference whenever a flexible address mapping is not necessary. Our evaluation using 11 data-intensive workloads shows that Utopia improves performance by 24% on average in single-core workloads over the baseline four-level radix-tree page table design.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员