This paper is concerned with the inverse time harmonic elastic scattering of multiple small and well-resolved cavities in two dimensions. We extend the so-called DORT method to the inverse elastic scattering so that selective focusing can be achieved on each cavity with far field measurements. A rigorous mathematical justification that relates the corresponding eigenfunctions of the time reversal operator to the locations of cavities is presented based on the asymptotic analysis of the far field operator and decaying property of oscillatory integrals. We show that in the regime $a\ll k^{-1}\ll L$, where $a$ denotes the size of cavity, $k$ is the compressional wavenumber $\kp$ or shear wavenumber $\ks$, and $L$ is the minimal distance between the cavities, each cavity gives rise to five significant eigenvalues and the corresponding eigenfunction generates an incident wave focusing selectively on that cavity. Numerical experiments are given to verify the theoretical result.
翻译:本文关注的是两个维度中多个小的和完全溶解的洞穴的逆时相弹性散射。 我们将所谓的DORT方法扩大到反弹性散射,以便能够有选择地关注每个洞穴,并进行远远的实地测量。 根据对远处田间操作员的无症状分析,将相应的时间逆向操作员的叶质功能与洞穴位置联系起来,提出了严格的数学解释。 我们表明,在制度内,用美元表示气孔大小,用美元表示,用美元表示压缩波数为$kp$或剪刀波数为$;用美元表示,用美元表示,用美元表示,用美元表示,用美元表示,用美元表示压缩波数为$kp$,用美元表示,用美元表示,用最短的距离表示,用美元表示,每个洞穴间产生5个重要的脑值,而相应的脑功能产生一种有选择的事故波,以该气道为重点。 做了数字实验以核实理论结果。