Most existing Spiking Neural Network (SNN) works state that SNNs may utilize temporal information dynamics of spikes. However, an explicit analysis of temporal information dynamics is still missing. In this paper, we ask several important questions for providing a fundamental understanding of SNNs: What are temporal information dynamics inside SNNs? How can we measure the temporal information dynamics? How do the temporal information dynamics affect the overall learning performance? To answer these questions, we estimate the Fisher Information of the weights to measure the distribution of temporal information during training in an empirical manner. Surprisingly, as training goes on, Fisher information starts to concentrate in the early timesteps. After training, we observe that information becomes highly concentrated in earlier few timesteps, a phenomenon we refer to as temporal information concentration. We observe that the temporal information concentration phenomenon is a common learning feature of SNNs by conducting extensive experiments on various configurations such as architecture, dataset, optimization strategy, time constant, and timesteps. Furthermore, to reveal how temporal information concentration affects the performance of SNNs, we design a loss function to change the trend of temporal information. We find that temporal information concentration is crucial to building a robust SNN but has little effect on classification accuracy. Finally, we propose an efficient iterative pruning method based on our observation on temporal information concentration. Code is available at https://github.com/Intelligent-Computing-Lab-Yale/Exploring-Temporal-Information-Dynamics-in-Spiking-Neural-Networks.


翻译:大多数现有的Spiking神经网络(SNNN)工作表明,SNNS可能使用时间信息动态的峰值。然而,对时间信息动态的清晰分析仍然缺乏。在本文中,我们问了几个重要问题,以提供对SNNs的基本理解:SNNs中什么是时间信息动态?我们如何测量时间信息动态?时间信息动态如何影响整个学习绩效?为了回答这些问题,我们用经验方式估算Fisher信息重量,以测量培训期间时间信息分布。令人惊讶的是,随着培训的进行,Fisher信息开始在早期时间步骤中集中。在培训之后,我们观察到信息高度集中在早期的几步中,我们称之为时间信息集中的现象。我们观察到,时间信息集中现象是SNNNIS的一个共同学习特征,通过对各种配置进行广泛的实验,例如结构、数据集、优化战略、时间恒定和时间步骤。此外,要揭示时间信息集中度如何影响SNNNR的绩效,我们设计一个丢失功能功能函数改变时间信息趋势。我们最后发现SNBR的时空浓度对S-rocent cent cental rogration roal-ral-ral-ral-ral-ral-al-lading to we fal-lading to lading to smakeding to

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员