We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
翻译:我们处理的是学习一个将目标和特征时间序列连接在一起的未知非参数系统动态的问题。 特征时间序列是在一个稀少和不规则的网格上测量的, 而我们只能进入目标时间序列的几个点。 学习到之后, 我们可以使用这些动态来预测从特征时间序列的先前值中得出的目标值。 我们将此任务设定为学习控制差异方程的解决方案图(CDE) 。 通过利用丰富的签名理论, 我们可以将这个非线性问题描绘成一个高维线性线性线性回归。 我们用预测错误提供了一个符咒, 它明显依赖个别的取样计划。 我们的理论结果通过模拟来说明, 模拟表明我们的方法在计算成本低的同时,比现有的恢复全部时间序列的算法要好。 我们通过在实际世界流行病学数据上展示其潜力来得出结论。