We study learning weak solutions to nonlinear hyperbolic partial differential equations (H-PDE), which have been difficult to learn due to discontinuities in their solutions. We use a physics-informed variant of the Fourier Neural Operator ($\pi$-FNO) to learn the weak solutions. We empirically quantify the generalization/out-of-sample error of the $\pi$-FNO solver as a function of input complexity, i.e., the distributions of initial and boundary conditions. Our testing results show that $\pi$-FNO generalizes well to unseen initial and boundary conditions. We find that the generalization error grows linearly with input complexity. Further, adding a physics-informed regularizer improved the prediction of discontinuities in the solution. We use the Lighthill-Witham-Richards (LWR) traffic flow model as a guiding example to illustrate the results.
翻译:我们研究的是非线性双曲部分差异方程式(H-PDE)的薄弱解决方案,由于这些方程式的不连续性,难以学习这些方程式。我们使用Fourier神经操作员(pi$-FNO)的物理知情变方来学习薄弱的解决方案。我们从经验上量化了$\pi$-FNO求解器的概括/外抽样错误,作为输入复杂性的函数,即初始条件和边界条件的分布。我们的测试结果表明,$\pi$-FNO对未知初始条件和边界条件的概括效果良好。我们发现,一般化错误随着输入复杂性的线性增长。此外,增加一个物理知情的常规化器可以改善解决方案中不连续性的预测。我们用Lighthill-Oneam-Richards(LWRW)流量模型作为指导示例。