The use of Physics-informed neural networks (PINNs) has shown promise in solving forward and inverse problems of fractional diffusion equations. However, due to the fact that automatic differentiation is not applicable for fractional derivatives, solving fractional diffusion equations using PINNs requires addressing additional challenges. To address this issue, this paper proposes an extension to PINNs called Laplace-based fractional physics-informed neural networks (Laplace-fPINNs), which can effectively solve the forward and inverse problems of fractional diffusion equations. This approach avoids introducing a mass of auxiliary points and simplifies the loss function. We validate the effectiveness of the Laplace-fPINNs approach using several examples. Our numerical results demonstrate that the Laplace-fPINNs method can effectively solve both the forward and inverse problems of high-dimensional fractional diffusion equations.
翻译:由于自动微分不适用于分数导数,因此使用物理信息神经网络(PINNs)解决分数扩散方程的正反问题需要解决额外的难题。为了解决这个问题,本文提出了一个PINNs的扩展版本,称为基于Laplace的分式物理信息神经网络(Laplace-fPINNs),它可以有效地解决分数扩散方程的正反问题。这种方法避免了引入大量辅助点和简化了损失函数。我们使用多组实例验证了Laplace-fPINNs方法的有效性。我们的数值结果表明,Laplace-fPINNs方法可以有效地求解高维分数扩散方程的正反问题。