Regularized system identification is the major advance in system identification in the last decade. Although many promising results have been achieved, it is far from complete and there are still many key problems to be solved. One of them is the asymptotic theory, which is about convergence properties of the model estimators as the sample size goes to infinity. The existing related results for regularized system identification are about the almost sure convergence of various hyper-parameter estimators. A common problem of those results is that they do not contain information on the factors that affect the convergence properties of those hyper-parameter estimators, e.g., the regression matrix. In this paper, we tackle problems of this kind for the regularized finite impulse response model estimation with the empirical Bayes (EB) hyper-parameter estimator and filtered white noise input. In order to expose and find those factors, we study the convergence in distribution of the EB hyper-parameter estimator, and the asymptotic distribution of its corresponding model estimator. For illustration, we run Monte Carlo simulations to show the efficacy of our obtained theoretical results.
翻译:正则化系统识别是过去十年中系统识别领域的主要突破。尽管已经取得了许多有前途的成果,但它离完整还有很多关键问题需要解决。其中之一就是渐近理论,它涉及模型估计器随着样本量无限增大而趋于收敛的性质。现有的正则化系统识别相关结果关于各种超参数估计器的几乎必然收敛性。这些结果的共同问题是它们没有包含影响这些超参数估计器收敛性的因素的信息,例如,回归矩阵。在本文中,我们针对具有经验贝叶斯(EB)超参数估计器和过滤白噪声输入的正则化有限脉冲响应模型估计的问题,解决了这类问题。为了揭示和找到这些因素,我们研究了EB超参数估计器的分布收敛性以及其对应模型估计器的渐近分布。为了说明,我们进行了蒙特卡罗模拟,展示了我们得到的理论结果的功效。