The sensibility and sensitivity of the environment play a decisive role in the safe and secure operation of autonomous vehicles. This perception of the surrounding is way similar to human visual representation. The human's brain perceives the environment by utilizing different sensory channels and develop a view-invariant representation model. Keeping in this context, different exteroceptive sensors are deployed on the autonomous vehicle for perceiving the environment. The most common exteroceptive sensors are camera, Lidar and radar for autonomous vehicle's perception. Despite being these sensors have illustrated their benefit in the visible spectrum domain yet in the adverse weather conditions, for instance, at night, they have limited operation capability, which may lead to fatal accidents. In this work, we explore thermal object detection to model a view-invariant model representation by employing the self-supervised contrastive learning approach. For this purpose, we have proposed a deep neural network Self Supervised Thermal Network (SSTN) for learning the feature embedding to maximize the information between visible and infrared spectrum domain by contrastive learning, and later employing these learned feature representation for the thermal object detection using multi-scale encoder-decoder transformer network. The proposed method is extensively evaluated on the two publicly available datasets: the FLIR-ADAS dataset and the KAIST Multi-Spectral dataset. The experimental results illustrate the efficacy of the proposed method.
翻译:环境的感知性和敏感性在自主车辆的安全和可靠操作中起着决定性作用。这种对周围环境的感知与人的视觉表现相似。人的大脑通过使用不同的感知频道和开发一种视异代表模型来看待环境。在这方面,在自主飞行器上安装了不同的外向感应器,以感知环境。最常见的外向感应传感器是相机、利达尔和雷达,以了解自主车辆的感知。尽管这些感应器在可见频谱域展示了它们的好处,但在恶劣的天气条件下,例如夜间,它们的行动能力有限,可能导致致命事故。在这项工作中,我们探索热对象探测,通过使用自我超强的反向学习方法来模拟视觉异变形模型。为此目的,我们提出了一个深层神经网络自我超感应光电热热网络(SSTN),以学习将可见光谱和红外频谱域域间的信息嵌入其中的功能,通过对比学习,以及随后利用这些学习的特征显示功能演示,用多尺度的摄像仪进行致命的事故。我们探索热对象的热对象,用多尺度的多层次的AS-多角度数据变压变压数据系统。在现有数据系统上进行了评估。