Businesses and organizations must ensure that their algorithmic decision-making is fair in order to meet legislative, ethical, and societal demands. For example, decision-making in automated hiring must not discriminate with respect to gender or race. To achieve this, prior research has contributed approaches that ensure algorithmic fairness in machine learning predictions, while comparatively little effort has focused on algorithmic fairness in decision models, specifically off-policy learning. In this paper, we propose a novel framework for fair off-policy learning: we learn decision rules from observational data under different notions of fairness, where we explicitly assume that observational data were collected under a different -- potentially biased -- behavioral policy. For this, we first formalize different fairness notions for off-policy learning. We then propose a machine learning approach to learn optimal policies under these fairness notions. Specifically, we reformulate the fairness notions into unconstrained learning objectives that can be estimated from finite samples. Here, we leverage machine learning to minimize the objective constrained on a fair representation of the data, so that the resulting policies satisfy our fairness notions. We further provide theoretical guarantees in form of generalization bounds for the finite-sample version of our framework. We demonstrate the effectiveness of our framework through extensive numerical experiments using both simulated and real-world data. As a result, our work enables algorithmic decision-making in a wide array of practical applications where fairness must ensured.


翻译:企业和组织必须确保其算法决策是公平的,以满足立法、伦理和社会需求。例如,自动化雇用的决策不得在性别或种族方面有所区别。为此,先前的研究有助于确保机器学习预测的算法公平,而相对较少的努力侧重于决策模式中的算法公平,特别是政策外学习。在本文件中,我们提出了一个公平政策学习的新框架:我们从不同公平概念下的观察数据中学习决策规则,我们明确假设观测数据是在不同的 -- -- 可能偏向 -- -- 行为政策下收集的。为此,我们首先将不同的非政策学习公平概念正式化。我们然后提出一种机器学习方法,在这些公平概念下学习最佳政策。具体地说,我们把公平概念重新纳入从有限抽样中可以估计的未经集思广益的学习目标。在这里,我们利用机器学习来尽量减少数据公平代表性上的目标,以便由此产生的政策能够满足我们的公平概念。我们进一步提供理论保障,以一般化的形式,为有限的、可能偏向外学习的理论学习确定不同的公平概念。我们用机器学习方法学习这些概念来学习最佳政策。具体地,我们用一个模型来展示我们框架的模型,以便模拟地应用我们做成一个真正的数据。我们的工作能够模拟地试验。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Stream Efficient Learning
Arxiv
0+阅读 · 2023年5月3日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员