Control barrier functions (CBFs) have been widely applied to safety-critical robotic applications. However, the construction of control barrier functions for robotic systems remains a challenging task. Recently, collision detection using differentiable optimization has provided a way to compute the minimum uniform scaling factor that results in an intersection between two convex shapes and to also compute the Jacobian of the scaling factor. In this paper, we propose a framework that uses this scaling factor, with an offset, to systematically define a CBF for obstacle avoidance tasks. We provide a theoretical analysis that proves the continuity of the proposed CBF. Empirically, we show that the proposed CBF is continuously differentiable, and the resulting optimal control problem is computationally efficient, which makes it applicable for real-time robotic control. We validate our approach, first using a 2D mobile robot example, then on the Franka-Emika Research~3 (FR3) robot manipulator both in simulation and experiment.
翻译:控制屏障函数(CBF)已广泛应用于安全关键的机器人应用。然而,构建机器人系统的控制屏障函数仍然是一个具有挑战性的任务。最近,使用可微优化进行的碰撞检测提供了一种计算最小均匀缩放因子的方法,该因子导致两个凸形状之间的交点,以及计算缩放因子的雅各比矩阵。在本文中,我们提出了一个框架,使用此缩放因子和偏移量来系统地定义用于障碍物避让任务的CBF。我们提供了理论分析,证明了所提出的CBF的连续性。实证上,我们显示所提出的CBF是连续可微的,并且得到的最优控制问题具有计算效率,这使其适用于实时机器人控制。我们首先在2D移动机器人示例中验证了我们的方法,然后在Franka-Emika Research~3(FR3)机器人机械臂上进行了模拟和实验验证。