项目名称: 几类离散与分布型变时滞抛物系统的高精度快速算法研究
项目编号: No.11501514
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 张启峰
作者单位: 浙江理工大学
项目金额: 18万元
中文摘要: 时滞微分系统的相关问题是当今国内外微分方程领域十分活跃的研究课题,其相关的应用极其广泛。该类系统的性态随着时滞量的变化而变化,甚至出现混沌现象,因而数值计算十分复杂。当前算法存在如下问题,导致其效率不高,主要包括四点:稳定域窄,计算精度低,耗时长,大范围区域的模拟失真等。为了提高算法的效率,本课题拟尝试通过稳定域分析的方法,结合快速预估子构造和紧交替方向技巧,建立几类高阶精度、快速计算的数值方法,并讨论算法的稳定性、收敛性。本项目的研究不仅将进一步丰富和发展时滞问题的相关理论,而且为神经网络、自动控制、计算生物等工程应用领域提供新的计算方法和依据。
中文关键词: 变时滞微分方程;数值稳定性;收敛性;紧格式;Runge-Kutta方法
英文摘要: The problems related to the delay differential system are very attractive project recently in the fields of the differential equations at home and abroad, and the related application is very extensive. The behavior of the system changes with the change of the delay, and even resulting in chaos. Thus, their simulation is very complicated. The current algorithms have lots of drawbacks including in narrow area of stability, low accuracy, long CPU time, failure in long time simulation and so on, which result in the low efficiency. In order to increase the efficiency, the project will analyze the numerical method basing on the area of the stability, combine with the construction of the preconditioner and the technique of compact alternate direction implicit method, establish several classes of methods of the high efficiency and rapid numerical methods, and discuss the stability and convergence of the algorithms. The research of the project will not only enrich and improve the theory of the delay problems, but also provide some new computational methods for the field of neutral network, automatic control, biological engineering and so on.
英文关键词: variable delay differential equations;numerical stability;convergence;compact scheme;Runge-Kutta method