We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative method presented in Khanwale et al. [\textit{Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes}, J. Comput. Phys. (2020)], to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) procedure to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise, Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our numerical implementation.
翻译:我们提出了一个完全混合的、隐含的时间框架,用以解决热动力一致的Cahn-Hilliard Navier-Stokes系统,该系统可以模拟两阶段流。在这项工作中,我们推广Khanwale 等人(\ textit{Siming两阶段流,与热动力稳定能源稳定的Cahn-Hilliard Navier-Stoks等方程式模拟双阶段流,以平行的适应性奥氏树类基于 meshes},J. Comput. Phys. (202020),建立一个完全混合的、可察觉的第二级准确计划,同时保持能源稳定性。新的方法需要减少在每次牛顿循环中提供的块式迭接合方法,从而更快的解答时间。该方法的基础是完全不精确的Crank-Nicolson能源稳定,同时稳定加勒金配制同步的同步的组合。我们使用连续的Galerkin (c) 固定的定流动要素化元素在空间中配有基于基于多级的多级变化(RBMS)的精确流,同时保持节流, 并显示我们当前数字的平行执行结果。我们用一个平行的平行的平平平压的平平压,我们用一个数字的比 方法,我们用一个显示的平平平平压的平平平的平的平压的平压的平压的平平平平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平压。