In [ESAIM: M2AN, 54(2020), 2229-2264], we proposed an HDG method to approximate the solution of a tangential boundary control problem for the Stokes equations and obtained an optimal convergence rate for the optimal control {that reflects its global regularity}. However, the error estimates depend on the pressure, and the velocity is not divergence free. The importance of pressure-robust numerical methods for fluids was addressed by John et al. [SIAM Review, 59(2017), 492-544]. In this work, we devise a new HDG method to approximate the solution of the Stokes tangential boundary control problem; the HDG method is also of independent interest for solving the Stokes equations. This scheme yields a $\mathbf{H}(\mathrm{div})$ conforming, globally divergence free, and pressure-robust solution. To the best of our knowledge, this is the first time such a numerical scheme has been obtained for an optimal boundary control problem for the Stokes equations. We also provide numerical experiments to show the performance of the new HDG method and the advantage over the non pressure-robust scheme.
翻译:在[ESAIM: M2AN, 54(2020), 2229-2264]中,我们建议了一种HDG方法,以近似解决斯托克斯方程式的间接边界控制问题,并获得了最佳控制的最佳趋同率 {反映其全球规律}。然而,误差估计取决于压力,速度不无差异。约翰等人(SIAM Review, 59(2017), 492-544) 探讨了对液体的压力-机器人数值方法的重要性。在这项工作中,我们设计了一种新的HDG方法,以近似斯托克斯相近边界控制问题的解决办法;HDG方法也是解决斯托克斯方程式的单独利益。这个方法产生一个$\mathbf{H}( matehrm{div}) 美元符合要求、全球差异无差异和压力-机器人解决方案。据我们所知,这是首次为斯托克斯方程式的最佳边界控制问题找到这样一个数字方法。我们还提供了数字实验,以显示新的DG方法和非压力机制的优势。