Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models. Although AIS is guaranteed to provide unbiased estimate for any set of hyperparameters, the common implementations rely on simple heuristics such as the geometric average bridging distributions between initial and the target distribution which affect the estimation performance when the computation budget is limited. In order to reduce the number of sampling iterations, we present a parameteric AIS process with flexible intermediary distributions defined by a residual density with respect to the geometric mean path. Our method allows parameter sharing between annealing distributions, the use of fix linear schedule for discretization and amortization of hyperparameter selection in latent variable models. We assess the performance of Optimized-Path AIS for marginal likelihood estimation of deep generative models and compare it to compare it to more computationally intensive AIS.
翻译:Annaaled Streaty Sampling(AIS)是一种常用的算法,用来估计深基因模型的难处理的边际可能性。虽然AIS保证对任何一套超参数都提供无偏倚的估计,但通常的实施依赖于简单的湿度学,例如初始和目标分布之间的几何平均桥段分布,在计算预算有限时会影响估计性能。为了减少抽样迭代数,我们提出了一个参数性AIS进程,其具有灵活的中间分布,其定义为与几何平均路径有关的残余密度。我们的方法允许在整形分布之间进行参数共享,使用固定线性线性时间表进行离散,并在潜在变异模型中进行超光度参数选择的摊销。我们评估了Optimic-Path AIS的性能,以对深基因模型进行边际的可能性估计,并将它与更加精密的AIS进行比较。