Semantic segmentation for extracting buildings and roads, from unmanned aerial vehicle (UAV) remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping field. In order to make the model lightweight and improve the model accuracy, A Lightweight and Efficient Network implemented using Dual Context modules (LEDCNet) for Buildings and Roads from UAV Aerial Remote Sensing Images is proposed. The proposed network adopts an encoder-decoder architecture in which a Lightweight Densely Connected Network (LDCNet) is developed as the encoder. In the decoder part, the dual multi-scale context modules which consist of the Atrous Spatial Pyramid Pooling module (ASPP) and the Object Contextual Representation module (OCR) are designed to capture more context information from feature maps of UAV remote sensing images. Between ASPP and OCR, a Feature Pyramid Network (FPN) module is used to and fuse multi-scale features extracting from ASPP. A private dataset of remote sensing images taken by UAV which contains 2431 training sets, 945 validation sets, and 475 test sets is constructed. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an mean intersection-over-union ratio (mIoU) of 71.12%. More extensive experiments on the public LoveDA dataset and CITY-OSM dataset to further verify the effectiveness of the proposed model with excellent results on mIoU of 65.27% and 74.39%, respectively. The source code will be made available on https://github.com/GtLinyer/LEDCNet .


翻译:从无人驾驶飞行器(UAV)深层学习遥感图像中提取建筑物和道路的语义分割法,从无人驾驶飞行器(UAV)遥感图像中提取建筑物和道路的语义分割法,比传统的勘测和绘图场手工分割法更高效和方便。为了使模型轻量分量,并改进模型准确性,提议在UAV空中遥感图像中为建筑物和道路使用双环境模块(LEDCNet)实施轻量级数字分解器(UAVA),从深层学习的无人驾驶飞行器遥感图像网络(LDCNet)中发展出一个轻量级高度连通的精度连线网络(LDCNet)作为编码器。在解码部分,由AVAVL(ASPP)集合模块和天体背景显示的双级双级多级环境环境比例校校校校校模模块(ASTM)和天体背景显示UAVLM(OFL)图图图集图象图象图象图象图象图象图象图集中,945的校准和MDM测试数据集将分别用来在SlBSDM上进行。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2020年11月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员